MIDAS

Materials in Devices as Superconductors

Presentation to the Spaceflight Experiment Initiatives Review Committee

February 15, 1994

Agenda

Introduction

Fred Allamby

Background - Relevance to LaRC Mission

- Collaborations

Program Objectives Science Requirements

Derived System Requirements

- Potential Carrier Requirements

Instrument Overview

- Subsystem Descriptions

- Weight and Power Estimates

Programmatics

- WBS

- Schedule

- Resources

- Cost

Dr. Stephanie Wise

Ruth Amundsen

MIDAS Science Objectives and Relevancy to NASA Missions

Dr. Stephanie A. Wise Flight Electronics Division

High Temperature Superconductivity (HTS)

- Superconductive materials
 - ◆ Zero electrical resistance
 - Magnetic levitation
- Measurable properties of superconductors
 - Critical transition temperature, T_c
 - ◆ Critical current density, J_c
 - ◆ Critical magnetic field, H_c
- High temperature superconductive materials
 - Discovered in 1986
 - ◆ Superconduct above 77K
 - Multi-component oxide ceramics

Relationship Between Critical Properties of Superconductors

Relevance to NASA Missions

- Atmospheric remote sensing
 - **◆ Thermal isolators for cryogenic detectors**
 - Bolometers
 - Cryocooler bearings

- Microwave and millimeter-wave devices
 - Space data processing
 - Communications
 - Navigation/radar/tracking

HTS Thermal Isolators

- Electrical leads account for Š 20% of the total heat load on stored cryogen (LHe)
- Replacement of existing leads with HTS lead assemblies could reduce total heat load by 10-15%
- Missions affected include COBE, SAFIRE, AXAF, SIRTF

Commercialization Potential

- Near-term payoff (3-5 years)
 - Cellular communications
 - Research materials
 - Magnetic Resonance Imaging (MRI)
- Long-term payoff (10+ years)
 - ◆ High speed electronics
 - **◆** High speed transportation
 - ◆ Energy storage

Collaborations

- Industrial Guest Investigators
 - ◆ TRW pulse tube cryocooler
 - ◆ AVX, Inc. thick film electronics, research materials
- University Participation
 - ◆ Christopher Newport University cryogenic testing
 - ◆ Clemson University HTS materials synthesis
 - Virginia Polytechnic Institute thermal modelling
- Other Gov't Agencies
 - ♦ Westinghouse Savannah River Site radiation testing

Research Accomplishments To Date

- Synthesized Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O HTS materials
- Evaluated effects of contamination, storage, and thermal cycling on electrical performance
- Demonstrated chemical compatibility and processing of HTS materials on yttriastabilized zirconia (YSZ) substrates
- Applied thick film processes to the fabrication of HTS circuitry on YSZ

Specimen Design and Fabrication

- Combine HTS thick film processing with conventional electronic thick film circuit to perform T_c and J_c measurements on a 1"x1" YSZ substrate
- Each substrate contains eight HTS elements which are individually characterized throughout the flight
- Temperature is monitored using PRT devices
- Use of multiplexing allows minimization of thermal losses due to electrical wiring

Program Objectives

- <u>Fabricate</u> HTS circuitry for remote sensing and commercial electronic applications
- <u>Evaluate</u> the electrical performance of HTS circuitry during spaceflight
- <u>Validate</u> performance of cryocooler enabling technology in space

Justification for Space Experiment

- No data is available on the performance of HTS materials in the space environment
- Electrical performance must be evaluated in the operational environment prior to insertion of HTS devices in space-borne remote sensing instruments and commercial satellite systems
- The miniature pulse tube cryocooler provides an enabling technology for remote sensing instruments

Flight Experiment Approach

- Evaluate multiple HTS thick film circuits
- Monitor T_c during cool-down and warm-up
- Monitor J_c periodically during flight
- Monitor cryocooler performance

Superconductive Transition Temperature (T_c)

T_c is the temperature below which the material is in a superconductive state. Measured at constant current.

Critical Current Density (J_c)

J_c indicates the maximum current which can be applied to a given specimen without loss of superconductivity. J_c is measured at a constant temperature.

Science Requirements

- Mission Duration
 - ◆ 7 days required
 - ◆ 60 days desired
- Number of Test Specimens
 - ◆ 4 test circuit boards (HTS/substrate combinations)
 - minimum of 4 HTS elements per board required
 - ♦ 8 HTS elements per board desired
- Temperature of Test Specimens
 - ♦ 80 K ± 5K required
 - ◆ 75 K ± 5K desired
- Temperature Measurement Accuracy
 - ♦ ± 0.5 K required
 - ♦ ± 0.25 K desired

Science Requirements Cont.

- Thermal Cycling
 - ◆ at least 1 cool down cycle
 - ◆ at least 1 warm up cycle
- Measurements Performed
 - ◆ T_c, J_c
- Measurement Frequency
 - ◆ 2 T_c measurements (cool down and warm up)
 - ◆ J_c measurement every 30 minutes
- Measurement Accuracy
 - ◆ 1µV detection
 - ◆ 0-50 A/cm² measurement

Science Requirements Cont.

Data Returned

- ◆ T_c ± 0.5K for each HTS element for each T_c measurement cycle
- "knee" of the curve for each HTS element for each J_c measurement

MIDAS Systems Development

Ruth Amundsen

Agenda

Derived System RequirementsInstrument Overview

- Subsystem Descriptions
- Weight and Power Estimates

Programmatics

- WBS
- Schedule
- Resources
- Cost

Derived Requirements: Cryocooler

- provide 23.3 W
- ambient temperature 25°C or less
 - ◆ minimize electronics box power: <10 W req'd, <5 W goal</p>
- cryocooler regenerator below 35°C
- structural load on cold tip < 0.7 lb
- heat load on cold tip < 400 mW at 75K
 - ◆ vacuum level < 10⁻⁵ torr
 - ◆ minimize thermal path of structural support: < 150 mW</p>
 - minimize wires: heat load < 50 mW</p>
 - minimum power components used on boards
 - ◆ staggered measurement timing: < 10 mW avg</p>

Derived Requirements: Science

- Electronics and software capability:
 - ◆ timing and control for T_c, J_c experiments
 - current source and voltage measurement
 - ◆ temperature measurement
 - record temperature and voltage data
- Minimum data rate of 100 KB per day
- Minimum current density for HTS: 1 mA/cm²

COMET

- Recovery portion in orbit 30 days
- 14.7 psi and 72°F
- Telemetry
- Support Plate: 11" x 32"
- Loads
 - ◆ Static 12 g's in +X
 - ◆ Random 11.5 Grms (+3 db for test)
- 350 W and 300 lbs among eight experiments
- Delivery 2 months prior to launch
- NASA HQ recently cautioned us that it is "high risk" to plan for Comet-02

Derived Requirements: Spacecraft

Potential carriers:

- ◆ Comet-02
- ◆ Eureca
- Tech Sat
- Student Explorer
- Hitchhiker

Carrier selection will define:

- ◆ Launch load and random vibration specs
- ◆ Thermal, pressure, micro-g and radiation environment
- ◆ Telemetry / internal data storage
- ◆ Power, mass, volume and mechanical interface
- Experiment duration and timing
- Quality and safety requirements

Potential Flight Carriers

<u>Carrier</u>	<u>Press</u>	<u>Load</u>	Duration	Recov
Comet-02	Y	12 g	30 d	Υ
Eureca	N	10 g	6 m	Υ
Tech Sat (SSTI)	N		3 y	N
Student Expl.	AR	9 g	1 y	N
Hitchhiker	AR	10 g	7 d	Υ

Cryocooler Subsystem

- Includes:
 - Cryocooler and control electronics
 - Mounting bracket
 - Vacuum shroud (carrier dependent)
- Completed:
 - ◆ Design, structural and thermal analysis of subsystem
 - ◆ Fab of prototype bracket
 - ◆ Preliminary definition of mechanical and thermal I/F with TRW

HTS Sample Subsystem

- Includes:
 - ◆ HTS hybrid boards
 - ◆ Sample mount and thermal block
- Designed and built in-house
- First combination of HTS and conventional electronics on a single board
- Completed:
 - **♦** Several prototype boards and ceramic substrates
 - ◆ Functional testing of prototypes and design mods
 - ◆ Evaluative testing of epoxies for board-to-sink bond
 - ◆ Design, analysis and build of prototype sample support

Electronics Subsystem

- Commercial card cage, computer and cards
 - ◆ 386, 25MHz microprocessor
 - ◆ A/D converter
 - ◆ Digital I/O
 - PCMCIA driver and flash memories
 - DC/DC converter
- One board to be designed and built in-house
 - ◆ D/A power control for cryocooler and HTS circuit boards
- Completed:
 - **◆** Selection and procurement of two development systems
 - Preliminary design of housing and cabling layout
 - ◆ Fabrication of housing, prep for vib test of prototype
 - Initial functional test of commercial electronics

Software

- Programming Language -- ADA
 - ◆ Extensive re-use of device driver code from LITE
 - Extensive analysis and development tools from SEAL
- Design Methodology
 - **◆ Pilot for SEAL S/W Development Guidebook**
 - ◆ Object-Oriented req's analysis, design and development
 - ◆ NDS-2100 documentation
- Completed:
 - Software requirements development based on architectural design
 - COTS software for functional test of card cage and computer system

Weight Estimate

Component	Weight (lbs)
Cryocooler & electronics	9.48
Vacuum shroud & cryocooler support bracket	13.32
HTS samples subsystem	0.20
Electronics box	6.32
Cabling	0.39
Housing and misc. hardware	<u> 10.87</u>
Total MIDAS Weight	40.58 lbs

Power Estimate

Component	Power Required (W)
Cryocooler	17
Cryocooler electronics	6
80386 Computer	3
A/D Converter	5
Power conversion @ 75% effi	iciency <u>10</u>
Total MIDAS Power	41 . W

Resources

CS resources in person-years

Division	FY94	FY95	FY96	Total/div
ACD	0.5	0.5	0.1	1.1
FD	1.0	0.2	0.0	1.2
FED	2.3	0.6	0.2	3.1
PD	1.0	0.7	0.4	2.1
SED	3.9	1.0	0.1	5.0
SSQRD	0.2	0.2	<u> </u>	<u>0.5</u>
Total per FY	8.9	3.2	0.9	13.0
NPS resources				
SED/FED	0.5	0.5	0.5	1.5

Cost

150K per year allotted

	<u>FY94</u>	FY95	FY 96
Fab.	62	60	10
Proc.	34	20	
NPS	40	40	40
Cont.	<u>14</u>	<u>30</u>	<u>10</u>
Total	150 K	150 K	60 K